Campus Map

Dale Winebrenner

Senior Principal Physicist

Research Professor, Astrobiology Program and Earth & Space Sciences






Dr. Winebrenners' interests are in the physics of light and radio waves, and in the exploration of icy environments on Earth and elsewhere based on that physics.

For sea ice, he has developed a physically based method to observe the springtime melting and fall freeze-up transitions on Arctic sea ice using synthetic aperture radar, and has shown that polarimetric microwave backscattering from thin sea ice depends on ice thickness and thus may be useful for remote thickness estimation. Recently he has investigated the optical fluorescence from chlorophyll in sea ice, with the aim of estimating phototrophic biomass near the ice-water interface.

Microwave emissions are used to map (decadal-scale) mean surface temperature and accumulation rate fields, for ice sheet on both Greenland and Antarctica. Most recently, Dale Winebrenner has begun to investigate meter-wavelength radar sounding of ice sheets. The first result of this work is a new means of estimating electromagnetic absorption within the ice sheet.

Department Affiliation

Polar Science Center


B.S. Physics, Purdue University, 1979

M.S. Electrical Engineering, University of California, San Diego, 1980

Ph.D. Electrical Engineering, University of Washington, 1985


2000-present and while at APL-UW

New estimates of ice and oxygen fluxes across the entire lid of Lake Vostok from observations of englacial radio wave attenuation

Winebrenner, D.P., P.M.S. Kintner, and J.A. MacGregor, "New estimates of ice and oxygen fluxes across the entire lid of Lake Vostok from observations of englacial radio wave attenuation," J. Geophys. Res. F: Earth Surf., 124, 795-811, doi:, 2019.

More Info

1 Mar 2019

Over deep Antarctic subglacial lakes, spatially varying ice thickness and the pressure‐dependent melting point of ice result in distinct areas of melting and freeze‐on at the ice‐water interface, that is, at the lake lid. These ice mass fluxes drive lake circulation and, because basal Antarctic ice contains air clathrate, affect the input of oxygen to the lake, with implications for subglacial life. Inferences of rates of melting and freeze‐on, that is, accretion rates, from radar layer tracking and geodesy are limited in spatial coverage and resolution. Here we develop a new method to estimate accretion rate, and the resulting oxygen input at a lake lid, using airborne radar data over Lake Vostok together with ice‐temperature and chemistry data from the Vostok ice core. Because the lake lid is a coherent reflector of known reflectivity (at our radar frequency), we can infer depth‐averaged radio wave attenuation in the ice, with a spatial resolution of ~1 km along flight lines. Spatial variation in attenuation depends mostly on variation in ice temperature near the lid, which in turn varies strongly with ice mass flux at the lid. We model ice temperature versus depth with ice mass flux as a parameter, thus linking that flux to observed depth‐averaged attenuation. The resulting map of melt and accretion rates independently reproduces features known from earlier studies but now covers the entire lid. We find that freeze‐on is dominant when integrated over the lid, with an ice imbalance of 0.05 to 0.07 km3/year, which is robust against uncertainties.

Response timescales for Martian ice masses and implications for ice flow on Mars

Koutnik, M.R., E.D. Waddington, D.P. Winebrenner, and A.V. Pathare, "Response timescales for Martian ice masses and implications for ice flow on Mars," Icarus, 225, 949-959, doi:10.1016/j.icarus.2012.09.031, 2013.

More Info

1 Aug 2013

On Earth and on Mars, ice masses experience changes in precipitation, temperature, and radiation. In a new climate state, flowing ice masses will adjust in length and in thickness, and this response toward a new steady state has a characteristic timescale. However, a flowing ice mass has a predictable shape, which is a function of ice temperature, ice rheology, and surface mass-exchange rate. In addition, the time for surface-shape adjustment is shorter than the characteristic time for significant deformation or displacement of internal layers within a flowing ice mass; as a result, surface topography is more diagnostic of flow than are internal-layer shapes. Because the shape of Gemina Lingula, North Polar Layered Deposits indicates that it flowed at some time in the past, we use its current topography to infer characteristics of those past ice conditions, or past climate conditions, in which ice-flow rates were more significant than today. A plausible range of near-basal ice temperatures and ice-flow enhancement factors can generate the characteristic geometry of an ice mass that has been shaped by flow over reasonable volume-response timescales. All plausible ice-flow scenarios require conditions that are different from present-day Mars, if the basal layers are pure ice.

Terahertz spectroscopy for the assessment of burn injuries in vivo

Arbab, M.H., D.P. Winebrenner, T.C. Dickey, A. Chen, M.B. Klein, and P.D. Mourad, "Terahertz spectroscopy for the assessment of burn injuries in vivo," J. Biomed. Opt., 18, 077004, doi:10.1117/1.JBO.18.7.077004, 2013.

More Info

1 Jul 2013

A diagnosis criterion is proposed for noninvasive grading of burn injuries using terahertz radiation. Experimental results are presented from in vivo terahertz time-domain spectroscopy of second- and third-degree wounds, which are obtained in a 72-hour animal study. During this period, the change in the spectroscopic response of the burned tissue is studied. It is shown that terahertz waves are sensitive not only to the postburn formation of interstitial edema, but also to the density of skin structures derived from image processing analysis of histological sections. Based on these preliminary results, it is suggested that the combination of these two effects, as probed by terahertz spectroscopy of the tissue, may ultimately be used to differentiate partial-thickness burns that will naturally heal from those that will require surgical intervention.

More Publications


Terahertz Polarimetry for Non-destructive Testing of Thin Films

Record of Invention Number: 47831

Arbab, Bayati, Dale Winebrenner


20 Sep 2016

Methods and systems for assessing a burn injury

The present invention provides methods, software, and systems for assessing a burn injury.

Patent Number: 9,295,402

Hassan Arbab, Antao Chen, Dale Winebrenner, Trevor Dickey, Pierre Mourad, Matthew Klein


29 Mar 2016

Terahertz spectroscopy of rough surface targets

Patent Number: 9,261,456

Hassan Arbab, Antao Chen, Eric Thorsos, Dale Winebrenner

More Info


16 Feb 2016

A method and system for analyzing noisy terahertz spectroscopy data transforms the measured time-dependent data into frequency space, for example, using a discrete Fourier transform, and then transforms the frequency spectrum into wavelet frequency space. The twice-transformed data is analyzed to identify spectroscopic features of the signal, for example, to identify a resonance frequency. The method may be used, for example, in a stand-off detector to identify particular chemicals in a target.

More Inventions

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center