APL-UW Home

Jobs
About
Campus Map
Contact
Privacy
Intranet

Jeff Thiel

Research Scientist/Engineer II

Email

jthiel@apl.uw.edu

Publications

2000-present and while at APL-UW

Retrospective comparison of measured stone size and posterior acoustic shadow width in clinical ultrasound images

Dai, J.C., B. Dunmire, K.M. Sternberg, Z. Liu, T. Larson, J. Thiel, H.C. Chang, J.D. Harper, M.R. Bailey, M.D. Sorensen, "Retrospective comparison of measured stone size and posterior acoustic shadow width in clinical ultrasound images," World J. Urol., 36, 727-732, doi:10.1007/s00345-017-2156-8, 2018.

More Info

1 May 2018

Purpose

Posterior acoustic shadow width has been proposed as a more accurate measure of kidney stone size compared to direct measurement of stone width on ultrasound (US). Published data in humans to date have been based on a research using US system. Herein, we compared these two measurements in clinical US images.

Methods

Thirty patient image sets where computed tomography (CT) and US images were captured less than 1 day apart were retrospectively reviewed. Five blinded reviewers independently assessed the largest stone in each image set for shadow presence and size. Shadow size was compared to US and CT stone sizes.

Results

Eighty percent of included stones demonstrated an acoustic shadow; 83% of stones without a shadow were ≤5 mm on CT. Average stone size was 6.5 ± 4.0 mm on CT, 10.3 ± 4.1 mm on US, and 7.5 ± 4.2 mm by shadow width. On average, US overestimated stone size by 3.8 ± 2.4 mm based on stone width (p < 0.001) and 1.0 ± 1.4 mm based on shadow width (p < 0.0098). Shadow measurements decreased misclassification of stones by 25% among three clinically relevant size categories (≤ 5, 5.1–10, > 10 mm), and by 50% for stones ≤ 5 mm.

Conclusions

US overestimates stone size compared to CT. Retrospective measurement of the acoustic shadow from the same clinical US images is a more accurate reflection of true stone size than direct stone measurement. Most stones without a posterior shadow are ≤ 5 mm.

PD37-09 kidney stone contrast with color-Doppler twinkling artifact as a function of mechanical index

Cunitz, B., J. Dai, M. Sorenson, R. Sweet, B. Dunmire, J. Thiel, M. Bruce, M. Bailey, Z. Liu, and J. Harper, "PD37-09 kidney stone contrast with color-Doppler twinkling artifact as a function of mechanical index," J. Urol., 199, e734, doi:10.1016/j.juro.2018.02.1744, 2018.

More Info

1 Apr 2018

Kidney stones can exhibit a twinkling artifact under color-flow Doppler ultrasound. There has been much work that suggests the mechanism for this artifact is micron sized bubbles trapped in the cracks of the stone cavitating from the incident Doppler pulses. We hypothesize that the signal-to-clutter ratio (SCR) of stone-to-background in Doppler mode increases with the ultrasound mechanical index (MI), a metric of the likelihood of cavitation, and that a minimum MI is needed for visibility under Doppler.

Our results show the contrast ratio of the twinkling artifact on a kidney stone to background noise increases with the MI. This suggests that adjusting the system settings to increase the MI on the stone, such as lowering the frequency and increasing the amplitude, will improve stone contrast and the ability to detect a kidney stone. Additionally, ultrasound manufacturers can potentially implement a stone-specific imaging preset for Doppler that maximizes the MI of the output while remaining within the regulated safety limits.

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center
Close

 

Close