APL-UW Home

Jobs
About
Campus Map
Contact
Privacy
Intranet

DJ Tang

Senior Principal Oceanographer

Email

djtang@apl.washington.edu

Phone

206-543-1290

Biosketch

Dr. Tang research encompasses ocean bottom interacting acoustics, especially problems involving horizontal, as well as vertical, environmental variabilities; acoustic tomography of sediments; sediment conductivity; wave propagation in range-dependent waveguides; array processing; acoustic scattering by gas bubbles and man-made objects in sediments.

Department Affiliation

Acoustics

Education

B.S. Physics, University of Science and Technology, Hefei, China, 1981

M.S. Physics/Acoustics, Institute of Acoustics, Beijing, China, 1985

Ph.D. Oceanographic Engineering, MIT/WHOI, 1991

Publications

2000-present and while at APL-UW

Overview of midfrequency reverberation data acquired during the Target and Reverberation Experiment 2013

Yang, J., D. Tang, B.T. Hefner, K.L. Williams, and J.R Preston, "Overview of midfrequency reverberation data acquired during the Target and Reverberation Experiment 2013," IEEE J. Oceanic Eng., EOR, doi:10.1109/JOE.2018.2802578, 2018.

More Info

16 Mar 2018

The Target and Reverberation EXperiment 2013 (TREX13) included a comprehensive reverberation field project in the frequency band of 2–10 kHz, and was carried out off the coast of Panama City, FL, USA, from April 21 to May 17, 2013. A spatially fixed transmit and receive acoustic system was used to measure reverberation over time under diverse environmental conditions, allowing study of reverberation level (RL) dependence on bottom composition, sea surface conditions, and water column properties. Extensive in situ measurements, including a multibeam bathymetric survey, chirp sonar subbottom profiling, gravity/diver cores, sediment sound speed and attenuation, interface roughness, wind-generated sea surface waves, and water column properties, were made to support studies of environmental effects on RL. Beamformed RL data are categorized to facilitate studies emphasizing physical mechanisms of 1) bottom reverberation; 2) sea surface impact; and 3) biological impact. This paper is an overview of RL over the entire sea trial, intending to summarize major observations and provide both a road map and suitable data sets for follow-up efforts on model/data comparisons. Emphasis is placed on the dependence of RL on local geoacoustic properties and sea surface conditions.

Direct measurements of sediment sound speed and attenuation in the frequency band of 2–8 kHz at the Target and Reverberation Experiment Site

Yang, J., and D. Tang, "Direct measurements of sediment sound speed and attenuation in the frequency band of 2–8 kHz at the Target and Reverberation Experiment Site," IEEE J. Ocean. Eng., 42, 1102-1109, doi:10.1109/JOE.2017.2714722, 2017.

More Info

1 Oct 2017

The sediment acoustic-speed measurement system is designed to measure in situ sediment sound speed and attenuation within the surficial 3 m of sediments in the frequency band of 2–8 kHz. Measurements were carried out during the Target and Reverberation EXperiment 2013 (TREX13) off Panama City, FL, USA. During TREX13, nine deployments at five selected sites were made along the 20-m isobath, termed the main reverberation track. The sediment types at the five selected sites ranged from coarse sand to a mixture of soft mud over sand, and the measured results show a spread of 80 m/s in sediment sound speed among the different types of sediments for all frequencies. Between 2–8 kHz, about 3% dispersion was observed at the sandy sites, whereas little dispersion was observed at the sites with mud. Preliminary attenuation results show 0.5–3.3 dB/m at the sandy sites, and 0.5–1.0 dB/m at the sites with mud in the same frequency band.

Six decades of evolution in underwater acoustics at the Applied Physics Laboratory, University of Washington

Williams, K.L. D. Tang, P.H. Dahl, E.I. Thorns, D.R. Jackson, and T.E. Ewart, "Six decades of evolution in underwater acoustics at the Applied Physics Laboratory, University of Washington," J. Acoust. Soc. Am., 137, 2331, doi:10.1121/1.4920514, 2015

More Info

1 Apr 2015

Professor Joe Henderson of the University of Washington physics department formed the Applied Physics Laboratory during WWII. The lab’s initial efforts were to redesign the magnetic influence exploders used in US torpedoes. One of the lab’s first Underwater Acoustics (UA) successes was development of transducers used in the Bikini Atoll Able test (1946). Those transducers, used to trigger other instrumentation, proved critical. Combining UA and torpedo expertise brought APL-UW to the forefront of tracking range design, construction and deployment in Dabob Bay, Nanoose, and St. Croix in the 1950s and 1960. Understanding the torpedo behavior seen in tracking ranges required measuring both the ocean environment and the acoustics within that environment. Making those measurements, as well as development and testing of models based on those measurements, also became standard operating procedure at APL, led in the 50’s by Murphy and Potter. This blueprint of applied research motivating basic research, and the pursuit of basic research via ocean experiments and high fidelity modeling, continues to this day. The presentation will follow this evolution. APL-UW ocean experiments carried out during that time, as well as notable APL-UW research papers, technical reports, computer codes and textbooks, will be used as guideposts.

More Publications

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center
Close

 

Close