APL Home

Campus Map

Thomas Powers

Research Assistant & Research Assistant




2000-present and while at APL-UW

Constrained robust submodular sensor selection with applications to multistatic sonar arrays

Powers, T., J. Bilmes, D.W. Krout, and L. Atlas, "Constrained robust submodular sensor selection with applications to multistatic sonar arrays," Proc., FUSION — 19th International Conference on Information Fusion, 5-8 July, 2179-2185 (IEEE, 2016).

More Info

4 Aug 2016

We develop a framework to select a subset of sensors from a field in which the sensors have an ingrained independence structure. Given an arbitrary independence pattern, we construct a graph that denotes pairwise independence between sensors, which means those sensors may operate simultaneously. The set of all fully-connected subgraphs (cliques) of this independence graph forms the independent sets of a matroid over which we maximize the minimum of a set of submodular objective functions. We propose a novel algorithm called MatSat that exploits submodularity and, as a result, returns a near-optimal solution with approximation guarantees that are within a small factor of the average-case scenario. We apply this framework to ping sequence optimization for active multistatic sonar arrays by maximizing sensor coverage and derive lower bounds for minimum probability of detection for a fractional number of targets. In these ping sequence optimization simulations, MatSat exceeds the fractional lower bounds and reaches near-optimal performance.

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center