APL-UW Home

Jobs
About
Campus Map
Contact
Privacy
Intranet

Wu-Jung Lee

Research Associate

Email

wjlee@apl.washington.edu

Phone

206-685-3904

Biosketch

I am interested in the use of sound — by both human and animals — to observe and understand the environment. My research spans two primary areas: acoustical oceanography, where I develop and apply active acoustic sensing techniques to infer properties of the ocean interior; and animal echolocation, where I combine experimental and computational approaches to understand the closed-loop sensorimotor feedback in echolocating bats and dolphins. In both areas, I focus on two fundamental aspects for achieving high confidence active acoustic sensing: 1) sampling – what can we do to collect better information? and 2) inference – how do we make reliable interpretation of echo information? Under these overarching themes, I am working to expand acoustic sensing capability for marine ecosystem monitoring at large temporal and spatial scales, and use echolocating animals as biological models to inspire adaptive sampling strategies in an active acoustic context.

Education

B.S. Electrical Engineering and Life Sciences, National Taiwan University, 2005

Ph.D. Oceanographic Engineering, Massachusetts Institution of Technology/Woods Hole Oceanographic Institution Joint Program in Applied Ocean Physics and Engineer, 2013

Wu-Jung Lee's Website

https://leewujung.github.io/

Publications

2000-present and while at APL-UW

Macroscopic observations of diel fish movements around a shallow water artificial reef using a mid-frequency horizontal-looking sonar

Lee, W.-J., D. Tang, T.K. Stanton, and E.I. Thorsos, "Macroscopic observations of diel fish movements around a shallow water artificial reef using a mid-frequency horizontal-looking sonar," J. Acoust. Soc. Am., 144, 1424-1434, doi:10.1121/1.5054013, 2018.

More Info

18 Sep 2018

The twilight feeding migration of fish around a shallow water artificial reef (a shipwreck) was observed by a horizontal-looking, mid-frequency sonar. The sonar operated at frequencies between 1.8 and 3.6 kHz and consisted of a co-located source and horizontal line array deployed at 4 km from the reef. The experiment was conducted in a well-mixed shallow water waveguide which is conducive to characterizing fish aggregations at these distances. Large aggregations of fish were repeatedly seen to emerge rapidly from the shipwreck at dusk, disperse into the surrounding area during the night, and quickly converge back to the shipwreck at dawn. This is a rare, macroscopic observation of an ecologically-important reef fish behavior, delivered at the level of aggregations, instead of individual fish tracks that have been documented previously. The significance of this observation on sonar performance associated with target detection in the presence of fish clutter is discussed based on analyses of echo intensity and statistics. Building on previous studies of long-range fish echoes, this study further substantiates the unique utility of such sonar systems as an ecosystem monitoring tool, and illustrates the importance of considering the impact of the presence of fish on sonar applications.

Tongue-driven sonar beam steering by a lingual-echolocating fruit bat

Lee, W.-J., B. Falk, C. Chiu, A. Krishnan, J.H. Arbour, C.F. Moss, "Tongue-driven sonar beam steering by a lingual-echolocating fruit bat," Plos Biol., 15, e2003148, doi:10.1371/journal.pbio.2003148, 2017.

More Info

15 Dec 2017

Animals enhance sensory acquisition from a specific direction by movements of head, ears or eyes. As active sensing animals, echolocating bats also aim their directional sonar beam to selectively "illuminate" a confined volume of space, facilitating efficient information processing by reducing echo interference and clutter. Such sonar beam control is generally achieved by head movements or shape changes of the sound-emitting mouth or nose. However, lingual-echolocating Egyptian fruit bats, Rousettus aegyptiacus, which produce sound by clicking their tongue, can dramatically change beam direction at very short temporal intervals without visible morphological changes. The mechanism supporting this capability has remained a mystery.

Here we measured signals from free-flying Egyptian fruit bats and discovered a systematic angular sweep of beam focus across increasing frequency. This unusual signal structure has not been observed in other animals, and cannot be explained by the conventional and widely used "piston model" that describes the emission pattern of other bat species. Through modeling we show that the observed beam features can be captured by an array of tongue-driven sound sources located along the side of the mouth, and that the sonar beam direction can be steered parsimoniously by inducing changes to the pattern of phase differences through moving tongue location. The effects are broadly similar to those found in a phased array–an engineering design widely found in human-made sonar systems that enables beam direction changes without changes in the physical transducer assembly. Our study reveals an intriguing parallel between biology and human engineering in solving problems in fundamentally similar ways.

Can the elongated hindwing tails of fluttering moths serve as false sonar targets to divert bat attacks?

Lee, W.-J., and C.F. Moss, "Can the elongated hindwing tails of fluttering moths serve as false sonar targets to divert bat attacks?" J. Acoust. Soc. Am., 139, 2579-2588, doi:10.1121/1.4947423, 2016.

More Info

1 May 2016

It has long been postulated that the elongated hindwing tails of many saturniid moths have evolved to create false sonar targets to divert the attack of echolocation-guided bat predators. However, rigorous echo-acoustic evidence to support this hypothesis has been lacking. In this study, fluttering luna moths (Actias luna), a species with elongated hindwing tails, were ensonified with frequency modulated chirp signals from all angles of orientation and across the wingbeat cycle. High-speed stereo videography was combined with pulse compressionsonar processing to characterize the echo information available to foraging bats. Contrary to previous suggestions, the results show that the tail echoes are weak and do not dominate the sonar returns, compared to the large, planar wings and the moth body. However, the distinctive twisted morphology of the tails create persistent echoes across all angles of orientation, which may induce erroneous sonar target localization and disrupt accurate tracking by echolocating bats. These findings thus suggest a refinement of the false target hypothesis to emphasize sonar localization errors induced by the twisted tails, and highlight the importance of physics-based approaches to study the sensory information involved in the evolutionary arms race between moths and their bat predators.

More Publications

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center
Close

 

Close