APL Home

Campus Map

Wayne Kreider

Senior Engineer






2000-present and while at APL-UW

Ultrasound-induced bubble clusters in tissue-mimicking agar phantoms

Movahed, P., W. Kreider, A.D. Maxwell, B. Dunmire, and J.B. Freund, "Ultrasound-induced bubble clusters in tissue-mimicking agar phantoms," Ultrasound Med. Biol., 43, 2318-2328, doi:10.1016/j.ultrasmedbio.2017.06.013, 2017.

More Info

1 Oct 2017

Therapeutic ultrasound can drive bubble activity that damages soft tissues. To study the potential mechanisms of such injury, transparent agar tissue-mimicking phantoms were subjected to multiple pressure wave bursts of the kind being considered specifically for burst wave lithotripsy. A high-speed camera recorded bubble activity during each pulse. Various agar concentrations were used to alter the phantom's mechanical properties, especially its stiffness, which was varied by a factor of 3.5. However, the maximum observed bubble radius was insensitive to stiffness. During 1000 wave bursts of a candidate burst wave lithotripsy treatment, bubbles appeared continuously in a region that expanded slowly, primarily toward the transducer. Denser bubble clouds are formed at higher pulse repetition frequency. The specific observations are used to inform the incorporation of damage mechanisms into cavitation models for soft materials.

Dependence of boiling histotripsy treatment efficiency on HIFU frequency and focal pressure levels

Khokhlova, T.D., Y.A. Haider, A.D. Maxwell, W. Kreider, M.R. Bailey, and V.A. Khokhlova, "Dependence of boiling histotripsy treatment efficiency on HIFU frequency and focal pressure levels," Ultrasound Med. Biol., 9, 1975-1985, doi:10.1016/j.ultrasmedbio.2017.04.030, 2017.

More Info

1 Sep 2017

Boiling histotripsy (BH) is a high-intensity focused ultrasound (HIFU)–based method of mechanical tissue fractionation that utilizes millisecond-long bursts of HIFU shock waves to cause boiling at the focus in milliseconds. The subsequent interaction of the incoming shocks with the vapor bubble mechanically lyses surrounding tissue and cells. The acoustic parameter space for BH has been investigated previously and an inverse dependence between the HIFU frequency and the dimensions of a BH lesion has been observed. The primary goal of the present study was to investigate in more detail the ablation rate and reliability of BH in the frequency range relevant to treatment of deep abdominal tissue targets (1–2 MHz). The second goal was to investigate the effect of focal peak pressure levels and shock amplitude on BH lesion formation, given a constant duty factor, a constant ratio of the pulse duration to the time to reach boiling and a constant number of BH pulses. A custom-built 12-element sector array HIFU transducer with F-number = 1.05 was used in all experiments. BH pulses at 5 different frequencies (1, 1.2, 1.5, 1.7 and 1.9 MHz) were delivered to optically transparent polyacrylamide gel phantoms and ex vivo bovine liver and myocardium tissue to observe cavitation and boiling bubble activity with high-speed photography and B-mode ultrasound imaging, correspondingly. In gel phantoms, a cavitation bubble cloud was shown to form prefocally and to shield the focus in all exposures at 1 and 1.2 MHz and in the highest amplitude exposures at 1.5–1.7 MHz; shielding was not observed at 1.9 MHz. In ex vivo tissue, this shielding effect was observed in 25% of exposures when peak negative in situ pressure exceeded 10.2 MPa at 1 MHz and 14.5 MPa at 1.5 MHz. When shielding occurred, the exposures resulted in mild tissue disruption in the prefocal region, but not liquefaction. The dimensions of liquefied lesions followed the inverse proportionality trend with frequency; consequently, the frequency range of 1.2–1.5 MHz appeared to be preferable for BH exposures in terms of the compromise between the ablation rate and reliability. The lesion size was independent of the duration of the BH pulses (or the total "HIFU on" time), provided that the number of pulses was constant and boiling was induced within each pulse. Thus, the use of shorter (1 ms vs. 10 ms), higher amplitude BH pulses allowed up to 10-fold reduction in treatment time for a given duty factor.

Shock formation and nonlinear saturation effects in the ultrasound field of a diagnostic curvilinear probe

Karzova, M.M., P.V. Yuldashev, O.A. Sapozhnikov, V.A. Khokhlova, B.W. Cunitz, W. Kreider, and M.R. Bailey, "Shock formation and nonlinear saturation effects in the ultrasound field of a diagnostic curvilinear probe," J. Acoust. Soc. Am., 141, 2327-2337, doi:10.1121/1.4979261, 2017.

More Info

1 Apr 2017

Newer imaging and therapeutic ultrasound technologies may benefit from in situ pressure levels higher than conventional diagnostic ultrasound. One example is the recently developed use of ultrasonic radiation force to move kidney stones and residual fragments out of the urinary collecting system. A commercial diagnostic 2.3 MHz C5-2 array probe has been used to deliver the acoustic pushing pulses. The probe is a curvilinear array comprising 128 elements equally spaced along a convex cylindrical surface. The effectiveness of the treatment can be increased by using higher transducer output to provide a stronger pushing force; however nonlinear acoustic saturation can be a limiting factor. In this work nonlinear propagation effects were analyzed for the C5-2 transducer using a combined measurement and modeling approach. Simulations were based on the three-dimensional Westervelt equation with the boundary condition set to match low power measurements of the acoustic pressure field. Nonlinear focal waveforms simulated for different numbers of operating elements of the array at several output power levels were compared to fiber-optic hydrophone measurements and were found to be in good agreement. It was shown that saturation effects do limit the acoustic pressure in the focal region of a diagnostic imaging probe.

More Publications


Portable Acoustic Holography Systems for Therapeutic Ultrasound Sources and Associated Devices and Methods

Patent Number: 9,588,491

Oleg Sapozhnikov, Mike Bailey, Vera Khokhlova, Wayne Kreider

More Info


7 Mar 2017

The present technology relates generally to portable acoustic holography systems for therapeutic ultrasound sources, and associated devices and methods. In some embodiments, a method of characterizing an ultrasound source by acoustic holography includes the use of a transducer geometry characteristic, a transducer operation characteristic, and a holography system measurement characteristic. A control computer can be instructed to determine holography measurement parameters. Based on the holography measurement parameters, the method can include scanning a target surface to obtain a hologram. Waveform measurements at a plurality of points on the target surface can be captured. Finally, the method can include processing the measurements to reconstruct at least one characteristic of the ultrasound source.

MRI-Guided Lithotripsy of Urinary Tract Stones

Record of Invention Number: 47984

Mike Bailey, Wayne Kreider, Adam Maxwell, Yak-Nam Wang


23 Feb 2017

Supplemental Know How for Pushing, Imaging, and Breaking Kidney Stones

Record of Invention Number: 47878

Mike Bailey, Larry Crum, Bryan Cunitz, Barbrina Dunmire, Vera Khokhlova, Wayne Kreider, John Kucewicz, Dan Leotta


9 Nov 2016

More Inventions

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center