Campus Map

Wayne Kreider

Senior Engineer






Bachelor of Science Engineering Science & Mechanics, Virginia Tech, 1993

Master of Science Engineering Mechanics, Virginia Tech, 1995

Doctor of Philosophy Bioengineering, University of Washington, 2008


2000-present and while at APL-UW

Dependence of inertial cavitation induced by high intensity focused ultrasound on transducer F-number and nonlinear waveform distortion

Khokhlova, T., P. Rosnitskiy, C. Hunter, A. Maxwell, W. Kreider, G. Ter Haar, M. Costa, O. Sapozhnikov, and V. Khokhlova, "Dependence of inertial cavitation induced by high intensity focused ultrasound on transducer F-number and nonlinear waveform distortion," J. Acoust. Soc. Am., 144, 1160, doi:10.1121/1.5052260, 2018.

More Info

1 Sep 2018

Pulsed high intensity focused ultrasound was shown to enhance chemotherapeutic drug uptake in tumor tissue through inertial cavitation, which is commonly assumed to require peak rarefactional pressures to exceed a certain threshold. However, recent studies have indicated that inertial cavitation activity also correlates with the presence of shocks at the focus. The shock front amplitude and corresponding peak negative pressure (p–) in the focal waveform are primarily determined by the transducer F-number: less focused transducers produce shocks at lower p–. Here, the dependence of inertial cavitation activity on the transducer F-number was investigated in agarose gel by monitoring broadband noise emissions with a coaxial passive cavitation detector (PCD) during pulsed exposures (pulse duration 1 ms, pulse repetition frequency 1 Hz) with p– varying within 1–15 MPa. Three 1.5 MHz transducers with the same aperture, but different focal distances (F-numbers 0.77, 1.02, 1.52) were used. PCD signals were processed to extract cavitation probability, persistence, and mean noise level. At the same p–, all metrics indicated enhanced cavitation activity at higher F-numbers; specifically, cavitation probability reached 100% when shocks formed at the focus. These results provide further evidence supporting the excitation of inertial cavitation at reduced p– by waveforms with nonlinear distortion and shocks.

Field characterization and compensation of vibrational nonuniformity for a 256-element focused ultrasound phased array

Ghanem, M.A., A.D. Maxwell, W. Kreider, B.W. Cunitz, V.A. Khokhlova, O.A. Sapozhnikov, and M.R. Bailey, "Field characterization and compensation of vibrational nonuniformity for a 256-element focused ultrasound phased array," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 65, 1618-1630, doi:10.1109/TUFFC.2018.2851188, 2018.

More Info

1 Sep 2018

Multielement focused ultrasound phased arrays have been used in therapeutic applications to treat large tissue volumes by electronic steering of the focus, to target multiple simultaneous foci, and to correct aberration caused by inhomogeneous tissue pathways. There is an increasing interest in using arrays to generate more complex beam shapes and corresponding acoustic radiation force patterns for manipulation of particles such as kidney stones. Toward this end, experimental and computational tools are needed to enable accurate delivery of desired transducer vibrations and corresponding ultrasound fields. The purpose of this paper was to characterize the vibrations of a 256-element array at 1.5 MHz, implement strategies to compensate for variability, and test the ability to generate specified vortex beams that are relevant to particle manipulation. The characterization of the array output was performed in water using both element-by-element measurements at the focus of the array and holography measurements for which all the elements were excited simultaneously. Both methods were used to quantify each element’s output so that the power of each element could be equalized. Vortex beams generated using both compensation strategies were measured and compared to the Rayleigh integral simulations of fields generated by an idealized array based on the manufacturer’s specifications. Although both approaches improved beam axisymmetry, compensation based on holography measurements had half the error relative to the simulation results in comparison to the element-by-element method.

The role of trapped bubbles in kidney stone detection with the color Doppler ultrasound twinkling artifact

Simon, J.C., O.A. Sapozhnikov, W. Kreider, M. Breshock, J.C. Williams Jr., and M.R. Bailey, "The role of trapped bubbles in kidney stone detection with the color Doppler ultrasound twinkling artifact," Phys. Med. Biol., 63, 025011, doi:10.1088/1361-6560/aa9a2f, 2018.

More Info

9 Jan 2018

The color Doppler ultrasound twinkling artifact, which highlights kidney stones with rapidly changing color, has the potential to improve stone detection; however, its inconsistent appearance has limited its clinical utility. Recently, it was proposed stable crevice bubbles on the kidney stone surface cause twinkling; however, the hypothesis is not fully accepted because the bubbles have not been directly observed. In this paper, the micron or submicron-sized bubbles predicted by the crevice bubble hypothesis are enlarged in kidney stones of five primary compositions by exposure to acoustic rarefaction pulses or hypobaric static pressures in order to simultaneously capture their appearance by high-speed photography and ultrasound imaging. On filming stones that twinkle, consecutive rarefaction pulses from a lithotripter caused some bubbles to reproducibly grow from specific locations on the stone surface, suggesting the presence of pre-existing crevice bubbles. Hyperbaric and hypobaric static pressures were found to modify the twinkling artifact; however, the simple expectation that hyperbaric exposures reduce and hypobaric pressures increase twinkling by shrinking and enlarging bubbles, respectively, largely held for rough-surfaced stones but was inadequate for smoother stones. Twinkling was found to increase or decrease in response to elevated static pressure on smooth stones, perhaps because of the compression of internal voids. These results support the crevice bubble hypothesis of twinkling and suggest the kidney stone crevices that give rise to the twinkling phenomenon may be internal as well as external.

More Publications


Methods and Systems for Non-invasive Treatment of Tissue Using High Intensity Focused Ultrasound Therapy

Patent Number: 9,700,742

Michael Canney, Mike Bailey, Larry Crum, Joo Ha Hwang, Tatiana Khokhlova, Vera Khokhlova, Wayne Kreider, Oleg Sapozhnikov

More Info


11 Jul 2017

Methods and systems for non-invasive treatment of tissue using high intensity focused ultrasound ("HIFU") therapy. A method of non-invasively treating tissue in accordance with an embodiment of the present technology, for example, can include positioning a focal plane of an ultrasound source at a target site in tissue. The ultrasound source can be configured to emit HIFU waves. The method can further include pulsing ultrasound energy from the ultrasound source toward the target site, and generating shock waves in the tissue to induce boiling of the tissue at the target site within milliseconds. The boiling of the tissue at least substantially emulsifies the tissue.

Portable Acoustic Holography Systems for Therapeutic Ultrasound Sources and Associated Devices and Methods

Patent Number: 9,588,491

Oleg Sapozhnikov, Mike Bailey, Vera Khokhlova, Wayne Kreider

More Info


7 Mar 2017

The present technology relates generally to portable acoustic holography systems for therapeutic ultrasound sources, and associated devices and methods. In some embodiments, a method of characterizing an ultrasound source by acoustic holography includes the use of a transducer geometry characteristic, a transducer operation characteristic, and a holography system measurement characteristic. A control computer can be instructed to determine holography measurement parameters. Based on the holography measurement parameters, the method can include scanning a target surface to obtain a hologram. Waveform measurements at a plurality of points on the target surface can be captured. Finally, the method can include processing the measurements to reconstruct at least one characteristic of the ultrasound source.

MRI-Guided Lithotripsy of Urinary Tract Stones

Record of Invention Number: 47984

Mike Bailey, Wayne Kreider, Adam Maxwell, Yak-Nam Wang


23 Feb 2017

More Inventions

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center