APL-UW Home

Jobs
About
Campus Map
Contact
Privacy
Intranet

Wayne Kreider

Senior Engineer

Email

wkreider@u.washington.edu

Phone

206-897-1814

Publications

2000-present and while at APL-UW

A ptotype therapy system for transcutaneous application of boiling histotripsy

Maxwell, A.D., P.V. Yuldashev, W. Kreider, T.D. Khokhlova, G.R. Schade, T.L. Hall, O.A. Sapozhnikov, M.R. Bailey, and V.A. Khokhlova, "A ptotype therapy system for transcutaneous application of boiling histotripsy," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 64, 1542-1557, doi:10.1109/TUFFC.2017.2739649, 2017.

More Info

1 Oct 2017

Boiling histotripsy (BH) is a method of focused ultrasound surgery that noninvasively applies millisecond-length pulses with high-amplitude shock fronts to generate liquefied lesions in tissue. Such a technique requires unique outputs compared to a focused ultrasound thermal therapy apparatus, particularly to achieve high in situ pressure levels through intervening tissue. This paper describes the design and characterization of a system capable of producing the necessary pressure to transcutaneously administer BH therapy through clinically relevant overlying tissue paths using pulses with duration up to 10 ms. A high-voltage electronic pulser was constructed to drive a 1-MHz focused ultrasound transducer to produce shock waves with amplitude capable of generating boiling within the pulse duration in tissue. The system output was characterized by numerical modeling with the 3-D Westervelt equation using boundary conditions established by acoustic holography measurements of the source field. Such simulations were found to be in agreement with directly measured focal waveforms. An existing derating method for nonlinear therapeutic fields was used to estimate in situ pressure levels at different tissue depths. The system was tested in ex vivo bovine liver samples to create BH lesions at depths up to 7 cm. Lesions were also created through excised porcine body wall (skin, adipose, and muscle) with 3–5 cm thickness. These results indicate that the system is capable of producing the necessary output for transcutaneous ablation with BH.

Ultrasound-induced bubble clusters in tissue-mimicking agar phantoms

Movahed, P., W. Kreider, A.D. Maxwell, B. Dunmire, and J.B. Freund, "Ultrasound-induced bubble clusters in tissue-mimicking agar phantoms," Ultrasound Med. Biol., 43, 2318-2328, doi:10.1016/j.ultrasmedbio.2017.06.013, 2017.

More Info

1 Oct 2017

Therapeutic ultrasound can drive bubble activity that damages soft tissues. To study the potential mechanisms of such injury, transparent agar tissue-mimicking phantoms were subjected to multiple pressure wave bursts of the kind being considered specifically for burst wave lithotripsy. A high-speed camera recorded bubble activity during each pulse. Various agar concentrations were used to alter the phantom's mechanical properties, especially its stiffness, which was varied by a factor of 3.5. However, the maximum observed bubble radius was insensitive to stiffness. During 1000 wave bursts of a candidate burst wave lithotripsy treatment, bubbles appeared continuously in a region that expanded slowly, primarily toward the transducer. Denser bubble clouds are formed at higher pulse repetition frequency. The specific observations are used to inform the incorporation of damage mechanisms into cavitation models for soft materials.

Dependence of boiling histotripsy treatment efficiency on HIFU frequency and focal pressure levels

Khokhlova, T.D., Y.A. Haider, A.D. Maxwell, W. Kreider, M.R. Bailey, and V.A. Khokhlova, "Dependence of boiling histotripsy treatment efficiency on HIFU frequency and focal pressure levels," Ultrasound Med. Biol., 9, 1975-1985, doi:10.1016/j.ultrasmedbio.2017.04.030, 2017.

More Info

1 Sep 2017

Boiling histotripsy (BH) is a high-intensity focused ultrasound (HIFU)–based method of mechanical tissue fractionation that utilizes millisecond-long bursts of HIFU shock waves to cause boiling at the focus in milliseconds. The subsequent interaction of the incoming shocks with the vapor bubble mechanically lyses surrounding tissue and cells. The acoustic parameter space for BH has been investigated previously and an inverse dependence between the HIFU frequency and the dimensions of a BH lesion has been observed. The primary goal of the present study was to investigate in more detail the ablation rate and reliability of BH in the frequency range relevant to treatment of deep abdominal tissue targets (1–2 MHz). The second goal was to investigate the effect of focal peak pressure levels and shock amplitude on BH lesion formation, given a constant duty factor, a constant ratio of the pulse duration to the time to reach boiling and a constant number of BH pulses. A custom-built 12-element sector array HIFU transducer with F-number = 1.05 was used in all experiments. BH pulses at 5 different frequencies (1, 1.2, 1.5, 1.7 and 1.9 MHz) were delivered to optically transparent polyacrylamide gel phantoms and ex vivo bovine liver and myocardium tissue to observe cavitation and boiling bubble activity with high-speed photography and B-mode ultrasound imaging, correspondingly. In gel phantoms, a cavitation bubble cloud was shown to form prefocally and to shield the focus in all exposures at 1 and 1.2 MHz and in the highest amplitude exposures at 1.5–1.7 MHz; shielding was not observed at 1.9 MHz. In ex vivo tissue, this shielding effect was observed in 25% of exposures when peak negative in situ pressure exceeded 10.2 MPa at 1 MHz and 14.5 MPa at 1.5 MHz. When shielding occurred, the exposures resulted in mild tissue disruption in the prefocal region, but not liquefaction. The dimensions of liquefied lesions followed the inverse proportionality trend with frequency; consequently, the frequency range of 1.2–1.5 MHz appeared to be preferable for BH exposures in terms of the compromise between the ablation rate and reliability. The lesion size was independent of the duration of the BH pulses (or the total "HIFU on" time), provided that the number of pulses was constant and boiling was induced within each pulse. Thus, the use of shorter (1 ms vs. 10 ms), higher amplitude BH pulses allowed up to 10-fold reduction in treatment time for a given duty factor.

More Publications

Inventions

Methods and Systems for Non-invasive Treatment of Tissue Using High Intensity Focused Ultrasound Therapy

Patent Number: 9,700,742

Michael Canney, Mike Bailey, Larry Crum, Joo Ha Hwang, Tatiana Khokhlova, Vera Khokhlova, Wayne Kreider, Oleg Sapozhnikov

More Info

Patent

11 Jul 2017

Methods and systems for non-invasive treatment of tissue using high intensity focused ultrasound ("HIFU") therapy. A method of non-invasively treating tissue in accordance with an embodiment of the present technology, for example, can include positioning a focal plane of an ultrasound source at a target site in tissue. The ultrasound source can be configured to emit HIFU waves. The method can further include pulsing ultrasound energy from the ultrasound source toward the target site, and generating shock waves in the tissue to induce boiling of the tissue at the target site within milliseconds. The boiling of the tissue at least substantially emulsifies the tissue.

Portable Acoustic Holography Systems for Therapeutic Ultrasound Sources and Associated Devices and Methods

Patent Number: 9,588,491

Oleg Sapozhnikov, Mike Bailey, Vera Khokhlova, Wayne Kreider

More Info

Patent

7 Mar 2017

The present technology relates generally to portable acoustic holography systems for therapeutic ultrasound sources, and associated devices and methods. In some embodiments, a method of characterizing an ultrasound source by acoustic holography includes the use of a transducer geometry characteristic, a transducer operation characteristic, and a holography system measurement characteristic. A control computer can be instructed to determine holography measurement parameters. Based on the holography measurement parameters, the method can include scanning a target surface to obtain a hologram. Waveform measurements at a plurality of points on the target surface can be captured. Finally, the method can include processing the measurements to reconstruct at least one characteristic of the ultrasound source.

MRI-Guided Lithotripsy of Urinary Tract Stones

Record of Invention Number: 47984

Mike Bailey, Wayne Kreider, Adam Maxwell, Yak-Nam Wang

Disclosure

23 Feb 2017

More Inventions

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center
Close

 

Close