APL Home

Campus Map

Je-Yuan Hsu

Research Assistant



Department Affiliation

Ocean Physics


BS Atmospheric Science, National Taiwan University, 2010


2000-present and while at APL-UW

Estimates of surface wind stress and drag coefficients in Typhoon Megi

Hsu, J.-Y., R.-C. Lien, E.A. D'asare, and T.B. Sanford, "Estimates of surface wind stress and drag coefficients in Typhoon Megi," J. Phys. Oceanogr., 47, 545-565, doi:10.1175/JPO-D-16-0069.1, 2017.

More Info

1 Mar 2017

Estimates of drag coefficients beneath Typhoon Megi (2010) are calculated from roughly hourly velocity profiles of three EM-APEX floats, air launched ahead of the storm, and from air-deployed dropsondes measurements and microwave estimates of the 10-m wind field. The profiles are corrected to minimize contributions from tides and low-frequency motions and thus isolate the current induced by Typhoon Megi. Surface wind stress is computed from the linear momentum budget in the upper 150 m. Three-dimensional numerical simulations of the oceanic response to Typhoon Megi indicate that with small corrections, the linear momentum budget is accurate to 15% before the passage of the eye but cannot be applied reliably thereafter. Monte Carlo error estimates indicate that stress estimates can be made for wind speeds greater than 25 m s-1; the error decreases with greater wind speeds. Downwind and crosswind drag coefficients are computed from the computed stress and the mapped wind data. Downwind drag coefficients increase to 3.5 ± 0.7 x 10-3 at 31 m s-1, a value greater than most previous estimates, but decrease to 2.0 ± 0.4 x 10-3 for wind speeds > 45 m s-1, in agreement with previous estimates. The crosswind drag coefficient of 1.6 ± 0.5 x 10-3 at wind speeds 30–45 m s-1 implies that the wind stress is about 20° clockwise from the 10-m wind vector and thus not directly downwind, as is often assumed.

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center