Campus Map

Mike Harrington

Director, EPS Department & Senior Principal Engineer





Department Affiliation

Electronic & Photonic Systems


M.S. Electrical Engineering, University of Washington-Seattle, 1992

B.S. Electrical Engineering, Virginia Tech, 1990


2000-present and while at APL-UW

Lessons learned from the United States ocean observatories initiative

Smith, L.M., and 16 others including G.S. Cram and M. Harrington, "Lessons learned from the United States ocean observatories initiative," Front. Mar. Sci., 5, 494, doi:10.3389/fmars.2018.00494, 2019.

More Info

4 Jan 2019

The Ocean Observatories Initiative (OOI) is a United States National Science Foundation-funded major research facility that provides continuous observations of the ocean and seafloor from coastal and open ocean locations in the Atlantic and Pacific. Multiple cycles of OOI infrastructure deployment, recovery, and refurbishment have occurred since operations began in 2014. This heterogeneous ocean observing infrastructure with multidisciplinary sampling in important but challenging locations has provided new scientific and engineering insights into the operation of a sustained ocean observing system. This paper summarizes the challenges, successes, and failures experienced to date and shares recommendations on best practices that will be of benefit to the global ocean observing community.

Designing an offshore geophysical network in the Pacific Northwest for earthquake and tsunami early warning and hazard research

Wilcock, W.S.D., D.A. Schmidt, J.E. Vidale, M.J. Harrington, P. Bodin, G.S. Cram, J.R. Delaney, F.I. Gonzalez, D.S. Kelley, R.J. Leveque, D.A. Manalang, C. McGuire, E.C. Roland, M.W. Stoermer, J.W. Tilley, and C. Vogl, "Designing an offshore geophysical network in the Pacific Northwest for earthquake and tsunami early warning and hazard research," Proc., MTS/IEEE OCEANS Conference, 19-23 September, Monterey, CA, doi:10.1109/OCEANS.2016.7761291 (IEEE, 2016).

More Info

1 Dec 2016

Every few hundred years, the Cascadia subduction zone off the coast of the Pacific Northwest hosts devastating earthquakes, and there is a growing awareness of the need to be prepared for these events. An offshore cabled observatory extending the length of the Cascadia subduction zone would enhance the performance of the earthquake and tsunami early warning systems, would enable real time monitoring and predictions of the incoming tsunami, and would contribute substantially to scientific research aimed at mitigating the hazard. The University of Washington has recently initiated a study to develop a conceptual design for the U.S. portion of an offshore observatory for earthquake and tsunami early warning and research. This paper presents the motivation for this work and plans for the study.

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center